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Abstract

This paper presents an application of the Variable Neighborhood Descent Branching method to solve the
Multi-Way Number Partitioning Problem. This problem consists of distributing the elements of a given
sequence into k disjoint subsets such that the sums of each subset elements fit in the shortest interval. It
shows a new method to decompose the MWNPP in n−1 subproblems using local branching constraints. This
decomposing justifies the neighborhood structure used in the proposed algorithm. The study of parameter
settings defines the operation of the proposed algorithm. The results shows that there is no statistically
significant difference of objective value between proposed algorithm and mathematical model solved by
CPLEX, but the time used by both methods are significantly different.

Keywords: Combinatorial Optimization, Multi-Way Number Partitioning Problem, Variable
Neighborhood Descent Branching, Matheuristics.

1 Introduction

A partition of a set X is a collection of mutually disjoint subsets whose union

forms X. A k-partition is a partition with exactly k non-empty subsets. In this

article, the subsets belonging to the partition are called parts, the set Z+ denotes
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the set of strictly positive integers. Furthermore, the notation Im = {y ∈ Z : 1 ≤
y ≤ m} represents the closed set of integers between 1 and m.

The Two-Way Number Partitioning Problem (TWNPP) consists of finding a

2-partition for the indexes of a given sequence V . The purpose of the problem is

to minimize the difference between the sums of elements in distinct parts. A gener-

alization of TWNPP is the Multi-Way Number Partitioning Problem (MWNPP).

In this problem, the number of parts k in which the sequence elements V are to

be distributed is fixed. Let the weight g(Aj) be given by the sum of the elements

whose indexes are contained in the part Aj . Given a numerical sequence V , the

goal is to find a k-partition for its indexes, so that the set of weights {g(Aj)}kj=1 be

contained in the shortest possible interval.

TWNPP is formally listed in [7] as one of the basic NP-complete problems.

There are a number of equivalences demonstrated between TWNPP and other NP-

complete problems. On the other hand, MWNPP appears originally in an article

about the analysis of a constructive heuristic called Differencing Method, better

known as Karmarkar-Karp Heuristic (KKH), proposed in [6]. According to [4],

MWNPP is a very difficult problem to solve using general purpose meta-heuristics,

such as Genetic Algorithms, Simulated Annealing and others. In many cases, these

methods lose in computational time and performance for constructive heuristics such

as KKH and even for the Longest Processing Time heuristic (LPT), proposed by [5].

The construction of exact algorithms for the solution of these problems is proposed

in [8]. For this, a Backtrack procedure is performed in constructive heuristics. When

the LPT heuristic is used during the enumeration, the Complete Greedy Algorithm

(CGA) is produced; if KKH is used, the Complete Karmarkar-Karp Algorithm

(CKK) is generated. The first improvement to be proposed in these algorithms

occurs with the algorithm Recursive Number Partitioning (RNP), proposed by [9].

The second improvement is due to [12], in which a new data structure applied to the

CKK algorithm is proposed, speeding up the search in the Karmarkar-Karp Tree.

Through successive MWNPP conversions of a (k−1)-partition to a k-partition, [11]

proposes an algorithm based on solving smaller subproblems. Currently, the state

of the art for MWNPP is the Sequential Number Partitioning algorithm, presented

in [10], and the Cached Iterative Weakening algorithm, shown in [14]. A complete

and highly relevant analysis of these algorithms is found in [13].

Given a mathematical model for the MWNPP, a branching technique by inser-

tion of Local Branching Constraints is proposed in [3]. These constraints are defined

from an initial solution xs, and determine how close or far a feasible solution can be

of xs. This technique allowed the proposition of many exact and approximate meth-

ods for the solution of combinatorial optimization problems. One of these methods

is the Variable Neighborhood Descent Branching (VNDB), described in [1], which

defines its neighborhoods using Local Branching Constraints.

This article addresses an adaptation of the VNDB method to the MWNPP us-

ing the constructive heuristic LPT as an initial solution. The ability to exclude

regions already exploited from the search space by simply adding constraints to

the mathematical model justifies the application of VNDB to solve this problem.
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The analysis of the computational time spent and the upper bound for each in-

stance shows that VNDB, with a reasonable number of neighborhoods, finds results

as good as the standard CPLEX solver and, in addition, in a shorter run time.

The article is organized as follows. Section 2 presents the problem addressed and

states a mathematical model for MWNPP. Section 3 introduces an analysis of local

branching constraints. Section 4 addresses the proposed VNDB method and evalu-

ates the particularity of its neighborhood in rings. Following, Section 5 presents the

computational tests performed for the comparison between the algorithms. Finally,

Section 6 concludes the paper, including a critique about the found results and the

proposed scope.

2 Problem Statement

MWNPP treated here is the version originally addressed in [6]. Its input is a

sequence V and its output is a k-partition of the indexes of V .

Definition 2.1 Let V = {v1, v2, . . . , vn} be a sequence of positive integers, and k a

positive integer. Find a k-partition of the V indexes, in the form {A1, A2, . . . , Ak},
that minimizes the function:

f({A1, A2, . . . , Ak}) = max
j′

{g(Aj′)} −min
j

{g(Aj)}. (1)

For instance, the sequence V = {11, 25, 13, 34, 89, 65, 43, 96, 56, 87} may be parti-

tioned in the ways shown in Table 1 for the values k ∈ {3, 4, 5, 6}. The feasible and

optimal values of the objective function for these cases are presented in Table 2.

feasible optimal

k = 3 {96, 43, 34}
︸ ︷︷ ︸

173

, {89, 56, 25}
︸ ︷︷ ︸

170

, {87, 65, 13, 11}
︸ ︷︷ ︸

176

{89, 87}
︸ ︷︷ ︸

176

, {25, 13, 34, 43, 56}
︸ ︷︷ ︸

171

, {11, 65, 96}
︸ ︷︷ ︸

172

k = 4 {96, 25, 13}
︸ ︷︷ ︸

134

, {89, 34}
︸ ︷︷ ︸

123

, {87, 43}
︸ ︷︷ ︸

130

, {65, 56, 11}
︸ ︷︷ ︸

132

{25, 13, 89}
︸ ︷︷ ︸

127

, {43, 87}
︸ ︷︷ ︸

130

, {34, 96}
︸ ︷︷ ︸

130

, {11, 65, 56}
︸ ︷︷ ︸

132

k = 5 {11, 89, 13}
︸ ︷︷ ︸

113

, {25, 87}
︸ ︷︷ ︸

112

, {96}
︸ ︷︷ ︸

96

, {34, 65}
︸ ︷︷ ︸

99

, {43, 56}
︸ ︷︷ ︸

99

{11, 89}
︸ ︷︷ ︸

100

, {25, 87}
︸ ︷︷ ︸

112

, {13, 96}
︸ ︷︷ ︸

109

, {34, 65}
︸ ︷︷ ︸

99

, {43, 56}
︸ ︷︷ ︸

99

k = 6 {96}
︸ ︷︷ ︸

96

, {89}
︸ ︷︷ ︸

89

, {87}
︸ ︷︷ ︸

87

, {11, 13, 65}
︸ ︷︷ ︸

89

, {56, 25}
︸ ︷︷ ︸

81

, {43, 34}
︸ ︷︷ ︸

77

{96}
︸ ︷︷ ︸

96

, {89}
︸ ︷︷ ︸

89

, {87}
︸ ︷︷ ︸

87

, {11, 25, 43}
︸ ︷︷ ︸

79

, {13, 65}
︸ ︷︷ ︸

78

, {34, 56}
︸ ︷︷ ︸

90

Table 1
Solutions of MWNPP for k ∈ {3, 4, 5, 6}.

Table 2
Objective function values.

feasible optimal

k = 3 176 - 170 = 6 176 - 171 = 5

k = 4 134 - 123 = 11 132 - 127 = 5

k = 5 113 - 96 = 17 112 - 99 = 13

k = 6 96 - 77 = 19 96 - 78 = 18

MWNPP can be modeled using binary variables xji to indicates if the i-th term

of the sequence V belongs to the part j (xji = 1) or not (xji = 0). Only pairs (j, i)
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outside the lower right triangle must be set to avoid multiplicities. Using this set

of variables, a mixed integer programming (MIP) formulation for MWNPP can be

given as:

min t2 − t1 (2a)

st. t1 ≤
n∑

i=j

vixji ≤ t2, ∀j ∈ Ik (2b)

min{i,k}∑
j=1

xji = 1, ∀i ∈ In (2c)

t1, t2 ∈ R+ (2d)

xji ∈ {0, 1}, ∀(j, i) : i ≥ j (2e)

The objective function (2a) minimizes the size of the interval containing

{g(Aj)}kj=1. Constraints (2b) guarantees that each part is non-empty, since t1 > 0,

and that the weight associated to each part are contained in the interval [t1, t2].

Constraints (2c) guarantee that the parts are disjoint and that all elements of V are

allocated to some part, since the problem is only well defined when n ≥ k. Finally,

constraints (2d) ensure that the constraints of maxj{g(Aj)} and minj{g(Aj)} are

always positive. This MIP model were first introduced in [2], with a little difference

in relation to the variables excluded.

The solution of this model implies the solution of MWNPP, but there is still

a surjective correspondence between feasible solutions of the mathematical model

and the set of k-partitions.

3 Analysis of Local Branching Constraints

Local Branching constraints define the Hamming distance between a given solu-

tion and a feasible solution of the problem by counting the number of variables with

different values [3]. Consider an incumbent solution xs for the mathematical model

(2). Let B be the set of pairs of indexes (j, i) such that xsji = 1. Local Branching

constraints are defined by the following expressions:

Δ(xs, x) :=
∑
ji∈B

(1− xji) +
∑
ji �∈B

xji ≤ R (3a)

Δ(xs, x) :=
∑
ji∈B

(1− xji) +
∑
ji �∈B

xji = R (3b)

Δ(xs, x) :=
∑
ji∈B

(1− xji) +
∑
ji �∈B

xji ≥ R (3c)

The constraint (3a) means that a feasible solution must be at a Hamming distance

less than or equal to R with respect to the solution xs. Thus, the neighborhood

NR(x
s) is a disk of radius R and center xs. In the constraint (3b), only solutions

with Hamming distance exactly equal to R in relation to xs are allowed. This

neighborhood structure is a degenerate ring with center at xs and internal and

external radius equal to R. Finally, the constraint (3c) considers all the space
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outside the radius disk R and center xs as space of feasible solutions.

It is important to note that Local Branching constraints do not always define

the exact neighborhood structure, because its shape will depend on the intersection

with the feasible region of the mathematical model of the problem studied.

Let x1 and x2 be two distinct feasible solutions of model (2). The first column

of the solution matrix always has the values x111 = 1 and x211 = 1. Therefore, there

are n− 1 columns left for the variables to assume different values. From the second

column forwards, an increase of at most two units per column at the total Hamming

distance can be obtained since, due to the constraints (2c), there is only one j such

that xji = 1 for each i column. Thus, the Hamming distance between two feasible

solutions of the mathematical model (2) is always an even number. Therefore, it

can be concluded that:

∀x1, x2 ∃r ∈ In−1 : Δ(x1, x2) = 2r (4)

and, as a consequence of (4), the maximum Hamming distance between two feasible

solutions can be given as:

max{Δ(x1, x2)} = 2(n− 1). (5)

Therefore, there is a decomposition of MWNPP into subproblems with con-

straints (3b). Using the equation (4), a subproblem Pr(x
s) resulted by adding the

constraint Δ(xs, x) = 2r to the model (2) is given as:

(Pr(x
s)) min t2 − t1 (6a)

st. t1 ≤
n∑

i=j

vixji ≤ t2, ∀j ∈ Ik (6b)

min{i,k}∑
j=1

xji = 1, ∀i ∈ In (6c)

∑
ji∈B

(1− xji) +
∑
ji �∈B

xji = 2r (6d)

t1, t2 ∈ R+ (6e)

xji ∈ {0, 1}, ∀(j, i) : i ≥ j (6f)

It is known that the mathematical model (6) only assumes feasible solutions when

1 ≤ r ≤ n − 1 due to the equation (5). It is also important to note that Pr1(x
s)

and Pr2(x
s) have no feasible solution in common whenever r1 �= r2, because its

distances from solution xs are distinct in this case. Therefore, the collection of

subproblems {Pr(x
s)}n−1r=1 is a decomposition of the mathematical model (2) and,

thus, a decomposition of MWNPP.

4 Proposed Algorithm

The proposed VNDB algorithm works with the insertion and removal of Lo-

cal Branching Constraints aiming, in addition to the definition of neighborhoods,
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the memory of the search space already explored using mathematical expressions.

Thus, let x1 be a feasible solution of the problem (2) and x2 be the solution of the

subproblem P1(x
1). The initial problem of VNDB is P1(x

1). The next subproblem

will be P2(x
1) or P1(x

2)∩ {Δ(x1, x) ≥ 2}, depending on which is the best solution,

or x1 or x2. The same logic applies to each of the possibilities.

In general, method decisions are made as follows. LetM be a set of constraints of

type (3c) and (xl)ml=1 a sequence of solutions found by VNDB. In the iteration t, the

solution of the subproblem Pr(x
l)∩M leads to the solution xl+1. If the solution xl+1

is better than xl, the subproblem is updated by adding the constraint Δ(xl, x) ≥
2(r + 1) to the set M and yielding the set M ′. This step eliminates the feasible

region of the Pr(x
l) subproblem. Finally, the constraint Δ(xl, x) = 2r is replaced

by the constraint Δ(xl+1, x) = 2. This procedure creates a problem in the form

P1(x
l+1)∩M ′. If the solution xl+1 is no better than xl, the constraint Δ(xl, x) = 2r

is changed by Δ(xl, x) = 2(r + 1), generating the subproblem Pr+1(x
l) ∩M .

The mathematical model (7) shows the structure of the VNDB subproblem after

passing through m distinct solutions and performing t =
∑m

l=1 rl iterations.

min t2 − t1 (7a)

s.t. t1 ≤
n∑

i=j

vixji ≤ t2, ∀j ∈ Ik (7b)

min{i,k}∑
j=1

xji = 1, ∀i ∈ In (7c)

∑
ji∈Bm

(1− xji) +
∑

ji �∈Bm

xji = 2rm (7d)

∑
ji∈Bl

(1− xji) +
∑
ji �∈Bl

xji ≥ 2rl, ∀l ∈ Im−1 (7e)

t1, t2 ∈ R+ (7f)

xji ∈ {0, 1}, ∀(j, i) : i ≥ j (7g)

The subproblem (7) has m more constraints than the mathematical model (2).

The constraint (7d) represents the current neighborhood of the iteration. The m−1

constraints (7e) make infeasible the search regions of the previous subproblems. The

increase of m with the number of iterations depends on the initial solution chosen

and the size of the neighborhood structure. The values rl ∈ In−1 define by how

many neighborhoods each solution passed without being surpassed.
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Algorithm 1 VNDB
1: function VNDB(ẋ, N) � Initial solution and number of neighborhoods
2: r ← 1 � Initial neighborhood
3: t← 1 � Iteration
4: while t < Itermax and r ≤ N do
5: add Δ(ẋ, x) = 2r
6: ẍ← solve() � Subproblem solution
7: remove Δ(ẋ, x) = 2r
8: if optimal then
9: if f(ẍ) ≥ f(ẋ) then � Without improved solution

10: r ← r + 1 � Next neighborhood
11: else � Improved solution
12: add Δ(ẋ, x) ≥ 2(r + 1) � Exclusion of explored search space
13: r ← 1 � Return to the first neighborhood
14: ẋ← ẍ � Update solution
15: end if
16: else if feasible then � No search space reduction
17: if f(ẍ) ≥ f(ẋ) then
18: r ← r + 1
19: else
20: r ← 1
21: ẋ← ẍ
22: end if
23: else � Infeasible or solve() does not find solution
24: r = r + 1
25: end if
26: t← t+ 1
27: end while
28: return ẋ
29: end function

Algorithm 1 summarizes the above explanations. The stopping criterion is the

exhaustion of the N neighborhoods in a given solution or by the maximum number

of iterations Itermax (or maximum time). In practice, the function solve() also

has a time limit to resolve the VNDB subproblem. Then there must be conditional

deviations for all possible solution status: {feasible, optimal, infeasible}.
When the method solve() returns a feasible but not optimal improvement so-

lution, it is not possible to exclude the subproblem region because there is some

unexploited space that may still contain the optimal solution to the general problem.

5 Computational Experiments

The proposed VNDB algorithm and the mathematical model presented in Sec-

tion 2 were coded in C++ using the Concert Technology of CPLEX 12.6 in the

default configuration. The computational experiments were carried out on an Intel

Core i7-3770 CPU 3.4 GHz with 8 cores and 32GB RAM running on a Ubuntu

16.04 64-bit operating system using clang compiler version 3.8. The test instances

composed of a set of sequences were randomly generated as follows. Sequences with

n integer elements with 12 digits ranging from 0000000000 to 999999999999 are

generated by randomly sampling for 12 consecutive times a number between 0 and

9 using a uniform distribution.
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The computational experiments are performed aiming to compare the quality

of the solution ub and the computational time associated to the VNDB and the

CPLEX solver applied in the mathematical model 2 considering a time limit of

t = 4500 seconds. The measures used to compare the results are based on the

relative error measure given by gap(B,A) = z(A)−z(B)
z(A) 100%, where z(A) and z(B)

corresponds to the objective function value associated to the best solution provided

by algorithm A and algorithm B, respectively. This function shows that the solution

provide by the algorithm B is better than the solution provided by the algorithm A

when gap(B,A) > 0. For instance, the gap(B,A) = 90% means that the response of

the algorithm A would have to be divided by 10 to match the algorithm B response.

The closer to 100% is the result of the function gap(B,A), better the algorithm B

is compared to an algorithm A. The same measure applies to the run time of the

algorithms. The order of the algorithms in the function entry is gap(V NDB,MIP ).

The values of gap() ≥ 100% are due to rounding.

A set of experiments was performed using the generated instances with n ∈
{100, 200, 400, 800} and considering k ∈ {3, 4, 5, 6}. Tables A.1 and A.2 present

the computational experiments results, i.e., the runtime (in seconds) and the upper

bound (ub), for each instance. These results are used to compute the gap() presented

in Table A.3. Table A.3 may be observed for a descriptive analysis of the results.

First, the VNDB runtime is always shorter since the gapt values are greater than

60%, indicating a runtime of at least 2.5 times smaller. VNDB finds the optimal

solution for 9 instances in the k = 3 column when gapub = 100% is observed.

Furthermore, the number of times that the ub provided by the VNDB algorithm

exceeds the one provided by the mathematical model (2) solved via CPLEX solver,

which corresponds to the number of positive gapub observed, is a total of 39 of the

80 instances tested. In more detail, VNDB presented to be best in 10 instances of

column k = 3, 8 instances of column k = 4, 8 instances of column k = 5, and 13

instances of column K = 6.

Finally, a set of statistical tests using objective function values falg as samples

is performed. The tests aim to answer whether it is possible to assert with 95%

confidence if the objective function values fMIP , associated to the best solution

attained by CPLEX solver when solving the mathematical model (2), are smaller

than the ub obtained through VNDB, given by fV NDB. The hypothesis test used

is:

{
H0 : fMIP ≥ fV NDB

H1 : fMIP < fV NDB

(8)

Table 3 shows the p-values of the statistical tests using objective function values

falg as samples. The hypothesis test rejects the null hypothesis only in instances

with k = 4. In this case, it is possible to state that there is a difference between the

algorithms and this difference is significant, i.e., the ub obtained through VNDB

is inferior to objective function values fMIP associated to the mathematical model

(2). In other cases, there is no difference between the results.
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Table 3
Results of the paired t-test with 95% confidence using the objective function values.

Student test K=3 K=4 K=5 K=6

p-values 16, 66% 3, 77% 7, 04% 46, 12%

6 Conclusion

This article presented an adapted VNDB matheuristic for solving MWNPP

and a comparison with the solution of the mathematical model using the CPLEX

solver. Results were obtained using randomly generated instances with uniformly

distributed elements.

Computational experiment results show that VNDB never reaches the maximum

time available for execution due to neighborhood exhaustion and a large number of

solved subproblems with non-optimal status. Despite this, VNDB has statistically

as good results as the same MIP running for a shorter time interval. The only

exception is its performance in instances where k = 3. A drawback found in the

computational experiments is that the CPLEX solver does not seem to set time in

a deterministic way on a multi-core processor. This causes some problems to take

up to 4500 seconds more in MIP execution.

As future work, a more elaborate parameter analysis can be applied to the

proposed VNDB so that it can use all the available time for the experiment. Thus

the comparison with the MIP problem can be more fair.
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A Appendix

Table A.1
Mathematical Model 2 Results

k=3 k=4 k=5 k=6

n Time ub Time ub Time ub Time ub

100 4063,50 49240 4513,94 249893 4498,00 455322 4495,52 1200561

100 3980,16 55843 4479,21 209860 4525,60 1605769 4523,85 5603669

100 4179,41 32015 4457,30 427940 4510,53 140990 4532,32 2602217

100 4120,93 52069 4455,24 93999 4558,21 1182564 4485,31 4725930

100 3905,11 6408,5 4475,06 80173,5 4542,53 1102740 4553,10 2951999

200 4371,95 13166,5 4519,97 135307 4557,98 1123962 4587,85 1590144

200 4381,11 4431 4537,66 65535 4542,90 739145 4666,52 4826459

200 4402,95 8819 4524,11 166066 4631,01 638049 4562,95 3675251

200 4367,34 19287 4448,33 214235 4578,41 1169098 4621,10 1855193

200 4390,39 45946 4504,69 159946 4479,97 1656139 4562,59 2524163

400 4375,50 16053,5 4612,23 253728 4691,69 194989 4753,60 888856

400 4532,59 52235 4563,96 358952 4600,64 1119839 4663,89 6310376

400 4531,44 4809 4611,12 32728 4707,68 1849077 4670,92 3613928

400 4553,46 24003 4591,07 292372 4672,92 406028 4690,89 791927

400 4523,91 22076 4576,98 129955 4672,51 732207 4705,01 2657192

800 4805,05 2348 4846,90 121657 4853,19 490825 4932,21 1054196

800 4674,52 69290 4877,63 63272 4874,87 363647 4894,91 4864688,999023

800 4782,10 19733,5 4851,47 436698 4859,28 646373 4896,03 1937925

800 4728,13 7854 4829,16 97683 4884,95 515063 4834,07 2996054,999023

800 4792,19 30999 4844,46 116701 4851,21 533006 4921,96 1044665

All resources used for experiments of this paper (including codes, in-

stances, and results) are available in https://github.com/AlexandreFrias/

AlgorithmsLAGOS2019.
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Table A.2
VNDB Results

k=3 k=4 k=5 k=6

n Time ub Time ub Time ub Time ub

100 912,14 39322 744,14 458052 680,49 596504 658,14 596504

100 1558,98 0 985,70 233894 905,41 596225 417,39 2996624

100 878,13 43515 667,90 295726 552,37 1132949 893,61 1379484

100 711,36 0 718,82 585619 469,65 468677 867,56 1848561

100 582,89 0 1079,56 229865 875,49 1425028 531,09 3014678

200 1490,28 0 1233,08 128692 1210,58 689690 1204,65 681721

200 1000,42 33602 1256,11 59067,5 800,97 1969700 823,28 2017573

200 1094,12 86025 1252,33 337142 847,00 642697 831,02 1674668

200 1448,89 46660 876,20 421421 838,17 821353 579,58 4273737

200 1441,05 76803 1135,23 216298 1231,48 747272 427,39 4989050

400 1744,63 0 1732,56 192672 697,12 1013347 598,29 560329

400 1000,71 0 1100,20 244158 778,44 877283 473,71 2102136

400 1457,58 0 636,83 103158 742,47 134151 529,31 1154835

400 1014,13 73047 1027,87 72002 1065,58 795390 557,70 740184

400 615,47 0 628,12 153911 399,66 930850 546,27 1298980

800 1534,66 66186 807,00 60500 1224,68 2681189 1148,09 3373820

800 695,73 0 968,98 2234417 1087,70 1456731 1043,90 3383655

800 670,97 91676 892,95 377468 1113,92 586678 1138,06 9116751

800 1179,86 105889 792,00 1757558 1183,25 7326466 1128,57 8909755

800 1407,38 91542 812,39 618097 972,31 9596348 1121,96 4947780

Table A.3
Comparison between VNDB and Mathematical Model 2 using gap(vndb,mip) on upper bound and

runtime.

k=3 k=4 k=5 k=6

n gapt gapub gapt gapub gapt gapub gapt gapub

100 77,55% 20,14% 83,51% -83,30% 84,87% -31,01% 85,36% 50,31%

100 60,83% 100,00% 77,99% -11,45% 79,99% 62,87% 90,77% 46,52%

100 78,99% -35,92% 85,02% 30,90% 87,75% -703,57% 80,28% 46,99%

100 82,74% 100,00% 83,87% -523,01% 89,70% 60,37% 80,66% 60,88%

100 85,07% 100,00% 75,88% -186,71% 80,73% -29,23% 88,34% -2,12%

200 65,91% 100,00% 72,72% 4,89% 73,44% 38,64% 73,74% 57,13%

200 77,17% -658,33% 72,32% 9,87% 82,37% -166,48% 82,36% 58,20%

200 75,15% -875,45% 72,32% -103,02% 81,71% -0,73% 81,79% 54,43%

200 66,82% -141,93% 80,30% -96,71% 81,69% 29,74% 87,46% -130,37%

200 67,18% -67,16% 74,80% -35,23% 72,51% 54,88% 90,63% -97,65%

400 60,13% 100,00% 62,44% 24,06% 85,14% -419,69% 87,41% 36,96%

400 77,92% 100,00% 75,89% 31,98% 83,08% 21,66% 89,84% 66,69%

400 67,83% 100,00% 86,19% -215,20% 84,23% 92,74% 88,67% 68,04%

400 77,73% -204,32% 77,61% 75,37% 77,20% -95,90% 88,11% 6,53%

400 86,40% 100,00% 86,28% -18,43% 91,45% -27,13% 88,39% 51,11%

800 68,06% -2718,82% 83,35% 50,27% 74,77% -446,26% 76,72% -220,04%

800 85,12% 100,00% 80,13% -3431,45% 77,69% -300,59% 78,67% 30,44%

800 85,97% -364,57% 81,59% 13,56% 77,08% 9,24% 76,76% -370,44%

800 75,05% -1248,22% 83,60% -1699,25% 75,78% -1322,44% 76,65% -197,38%

800 70,63% -195,31% 83,23% -429,64% 79,96% -1700,42% 77,21% -373,62%
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