
Variable Neighborhood Search applied to
Multi-way Number Partitioning Problem

Alexandre Frias Faria 1 Sérgio Ricardo de Souza 1

Carlos Alexandre Silva 2

Abstract

This paper presents an algorithm for the optimization version of Multi-Way Num-
ber Partitioning Problem (MWNPP). This problem consists in distributing the
elements of a given sequence into k disjoint subsets so that the sums of each subset
elements fits in the shortest interval. The metaheuristics Variable Neighborhood
Search (VNS), adapted for solving the MWNPP, has a good performance over in-
stances less than six subsets. A comparative study with two algorithms of the
literature (Karmarkar-Karp Heuristic and Longest Processing Time) is carried out,
using randomly generated instances and objective functions values. The statisti-
cal tests shows that the results of the VNS proposed are significantly better than
constructive methods and improved literature heuristics.

Keywords: Combinatorial Optimization, Multi-way Number Partitioning
Problem, Metaheuristic.

1 CEFET-MG, Av. Amazonas 7675, 30510-000 – Nova Gameleira – Belo Horizonte – MG
– Brasil
Email: alexandrefrias1@hotmail.com, sergio@dppg.cefetmg.br
2 IFMG, Av. Serra da Piedade 299, 34515-640 – Morada da Serra – Sabará – MG – Brasil
Email: carlos.silva@ifmg.edu.br



1 Introduction

In this article, a partition of a set X is a collection of subsets, two to two
disjoints, whose union forms X . A k-partition is a partition having exactly k
non-empty subsets. The subsets belonging to the partition are called parts.
The set Z+ indicates strictly positive integers numbers and the notation Im =
{y ∈ Z : 1 ≤ y ≤ m} denotes the set of all integers between 1 and m.

This paper addresses the Multi-Way Number Partitioning Problem, in the
sequel named MWNPP, first level generalization of the Two-Way Number
Partitioning Problem (TWNPP). Let V be a numerical sequence. In the
MWNPP, the objective is to find a k-partition of the indexes of V , so that
the sums of the elements of each part are as close as possible to each other.
This comes down to having the largest sum part as close to the smallest
part as possible. An immediate conclusion is that, in relation to TWNPP,
the MWNPP expands the number of parts in which the elements of the V
sequence must be distributed.

There is an extensive literature on TWNPP and its variations. It is a clas-
sical Combinatorial Optimization problem, formally listed in [5] as one of the
basic NP-Complete problems. The MWNPP arises explicitly in an article deal-
ing with the analysis of a constructive heuristic called Differencing Method,
better known as Karmarkar-Karp Heuristic (KKH), proposed by [4]. This
heuristic seeks to divide the largest numbers of the sequence V into distinct
parts, inserting, in the set of unallocated elements, the differences between the
elements removed, as long as it is not empty. In [10], an approximation ratio
given by [4/3− 1/(3(k − 1))] is shown for KKH. This result imposes a limited
error interval for the values obtained with KKH, being similar to the ratio
found for the Longest Processing Time (LPT) algorithm, proposed in [3].

According to [1], the MWNPP is a very difficult problem to be solved by
general-use metaheuristics, like Genetic Algorithms, Simulated Annealing and
others. In many cases, these methods lose in terms of computational time and
in performance for the KKH and even for the LPT. The construction of ex-
act algorithms is proposed in [6], where a Backtrack procedure is performed
in constructive heuristics, like LPT and KKH, called Complete Greedy Al-
gorithm (CGA) and Complete Karmarkar-Karp Algorithm (CKKA), respec-
tively. The first improvement in these works happens with the algorithm
Recursive Number Partitioning, proposed by [7]. The second improvement is
the contribution of [13], in which a new data structure applied to the work of
[7] is proposed, speeding up the search in the Karmarkar-Karp Tree. Through
successive MWNPP conversions from a (k − 1)-partition to a k-partition, an



algorithm based on smaller subproblems resolution is proposed in [12]. Cur-
rently, the state of the art for MWNPP is the Sequential Number Partitioning
algorithm [8] and the Cached Iterative Weakening algorithm, [14].

This article presents an adaptation of the VNS method for the MWNPP
solution and a comparison of this solution with that performed by two con-
structive methods of the literature (KKH and the intensified LPT). The main
reason for applying the VNS to the MWNPP is the set of good results found
in [9] for the solution of the Multidimensional Two-way Number Partitioning
Problem (MTWNPP). The current article is organized as follows: Section 2
presents the statement and mathematical model of the problem treated; Sec-
tion 3 shows the proposed VNS; Section 4 presents the tests performed for the
comparison between the algorithms; Section 5 ends the paper, showing the
conclusions.

2 Problem Setup

The MWNPP treated here is the version originally addressed in [4]. The
input is a V = {v1, v2, . . . , vn} sequence of positive integer numbers and the
output is a k-partition of the indexes of V , where k is a positive integer num-
ber. The k-Number Partitioning Problem (Multi-way Number Partitioning
Problem) consists of finding a k-partition of the indexes of V , in the form
{A1, A2, . . . , Ak}, that minimize the function:

f({A1, A2, . . . , Ak}) = max
j′







∑

i∈Aj′

vi







−min
j







∑

i∈Aj

vj







(1)

The Integer Linear Optimization mathematical model of this problem can
be described as follows:

min t2 − t1 (2)

sub. to t1 ≤

n−j+1
∑

i=1

vixji ≤ t2, ∀j ∈ Ik (3)

min{n−i+1,k}
∑

j=1

xji = 1, ∀i ∈ In (4)

t1, t2 ∈ Z+ (5)

xji ∈ {0, 1}, ∀(j, i) : i+ j ≤ n+ 1 (6)

The expression (2) is the objective function to be minimized, and represents



the size of the interval that contains all the k sums of the elements of the
parts. The k inequalities (3) show that the model guarantees that each part
is non-empty, since t1 > 0, due to expression (6), and also that all parts are
contained in the range [t1, t2]. The n equations indicated by the expression
(4) ensure that the parts are disjoint and that all elements of V are allocated
somewhere, once the problem is only well defined when n ≥ k. The relation
(5) shows that the limitings of the largest and smallest sum of the elements
of the parts are always positive. The relation (6) indicates that xji = 1 if the
index element i of the set V belongs to the index part j. Only pairs (j, i) such
that i+j ≤ n+1 must be defined, since the order of the parts does not change
the solution. Thus, the last element vn−1 can only be in the parts between
1 and l + 1 for any feasible solution of the problem. This model founds the
representation of a feasible MWNPP solution as being a vector s such that
si = j if vi ∈ Aj . It is also impossible to have j > 1 + max1≤l≤i {sl} to avoid
multiplicities of equal solutions.

3 Proposed Algorithm

The adaptation of the Variable Neighborhood Search (VNS) metaheuris-
tic proposed here works with reallocation movements of an element between
parts of the partition {A1, A2, . . . , Ak}. The movement mi,j, defined only
for i 6∈ Aj , removes an index element i from the part where it is and re-
locates it to the index part j. Thus, if i ∈ Al, a reallocation movement
{A1, A2, ...Al, ..., Aj , ..., Ak}⊕mi,j leads to {A1, A2, ...Al−{i}, ..., Aj∪{i}, ..., Ak}.
Let s′ = {A′

1, A
′
2, ..., A

′
k} and s = {A1, A2, ..., Ak}. The neighborhoods N1(s),

N2(s) e N3(s) are defined, in consequence, by compositions of one, two, and
three distinct movements mi,j , as follows:

N1(s) = {s
′ : s′ ← s⊕mi,j, ∀(i, j) ∈ In × Ik} (7)

N2(s) = {s
′ : s′ ← s⊕mi,j ⊕mi′,j′, ∀(i, j) ∈ In × Ik} (8)

N3(s) = {s
′ : s′ ← s⊕mi,j ⊕mi′,j′ ⊕mi′′,j′′, ∀(i, j) ∈ In × Ik} (9)

and are such that Nl(s) ∩Nj(s) = ∅ ∀i 6= j.

The Algorithm 1 describes the implemented VNS. This implementation
follows the general structure for this metaheuristic, introduced in [11]. The
initial solution is the worst possible for the instance, being the k − 1 smallest
elements of V defining, each one, a part Aj = {vi} ∀j ∈ {1, 2, ...k − 1}.
The perturbation in the current solution is a random movement mi,j. The
local search uses the Best Improvement heuristic to select the neighbor that
causes the lowest decrease of the objective function and updates it as a current



solution.

Algorithm 1 Adapted VNS algorithm
1: function VNS(s, f()) ⊲ Initial solution.
2: r ← 1 ⊲ Initial Nr(s).
3: s′ ← s

4: while cont < Itermax or gap(s, s′) < 0.9 do ⊲ Stopping criterion by the improvement or iterations

5: s′ ← arg minNr(s) f(s) ⊲ Best Improvement

6: if f(s′) < f(s) then

7: s← s′

8: else

9: r ← (r + 1) mod 3 ⊲ Neighborhood exchange
10: end if

11: cont← cont + 1
12: end while

13: return s

14: end function

4 Experimental Results

The tested algorithms (adapted VNS, Lpt 1 e KKH) were implemented in
C++ language. The experiments were performed on a computer with CPU Intel
Core i3-M330, 2.13GHz, 3GB of RAM and Ubuntu 16.04 (32 bits) operational
system, using the compiler g++ version 5.4 for their execution. The instances
for the experiments were generated randomly. The generated V sequences
have n elements, with n ∈ {100, 200, 400, 800}, and the elements are integers,
varying from 0 to 999999999999, with 12 digits and uniform distribution. For
this end, a number between 0 and 9, inclusive, is randomly generated for 12
consecutive times. This process is repeated n times for the generation of a
test instance.

The objective of the computational experiments of this article is to perform
a comparison between the result found by the constructive heuristics KKH,
proposed by [6] and Lpt 1, an intensification of the LPT proposed by [2], and
the result obtained by the Adapted VNS metaheuristic, showed in Algorithm
1. The measures for the comparison of the results are the objective function
values in each algorithm and the measure gap(B,A) = z(A)−z(B)

z(A)
.100%, which

shows how much the response of the algorithm B differs in percentage from
the response of the algorithm A, where z(A) and z(B) are their respective
objective function values. The spent computational time is not subject to
comparison, since the algorithms have complexities between O(n.log(n)), for
KKH and Lpt 1, and O(n3), for the VNS. Table 1 presents the computational
results. Note that the order of the algorithms at the input of the gap() function
was carefully chosen to maintain most of the positive values and to facilitate
the verification of the data and hypotheses necessary to perform the t-test.



Table 1
Comparison of the computational results from KKH, Lpt 1 and VNS algorithms.

KKH vs VNS - gap(V NS,KKH) Lpt 1 vs VNS - gap(V NS,Lpt 1)

inst/ k k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

inst1 92,40% 98,17% 97,08% 98,45% 47,07% 66,94% 63,70% 64,51%

inst2 99,82% 99,64% 99,40% 97,35% 81,22% 96,59% 94,55% 70,72%

inst3 99,93% 99,71% 99,69% 97,13% 94,73% 52,76% 64,73% -148,46%

inst4 95,38% 98,84% 98,92% 96,42% 92,40% 96,86% 80,19% 21,44%

inst5 99,99% 99,98% 99,94% 99,54% 92,66% 93,35% 92,21% 80,59%

inst6 99,98% 99,94% 99,92% 99,75% 98,37% 98,83% 96,32% 28,94%

inst7 99,66% 99,90% 98,78% 99,18% 97,80% 91,02% 78,59% 73,76%

inst8 99,75% 99,97% 99,65% 99,87% 95,11% 81,52% 72,91% 93,46%

inst9 99,82% 99,95% 99,89% 99,74% 96,79% 93,91% 77,57% 87,84%

inst10 99,99% 99,93% 99,77% 99,60% 99,50% 93,08% 92,25% 79,08%

inst11 100,00% 100,00% 99,96% 99,80% 99,08% 97,96% 88,96% 44,40%

inst12 100,00% 99,98% 99,87% 99,12% 99,82% 97,60% 94,93% 41,95%

inst13 100,00% 99,99% 99,58% 99,88% 98,89% 99,14% 53,08% 95,32%

inst14 99,98% 99,70% 99,48% 99,82% 99,61% 98,16% 88,16% 95,83%

inst15 99,36% 99,99% 99,91% 98,72% 97,42% 98,74% 92,82% 80,50%

inst16 100,00% 100,00% 99,99% 99,97% 99,91% 99,71% 97,57% 87,18%

inst17 99,99% 99,97% 99,89% 99,70% 97,79% 97,43% 92,41% 22,17%

inst18 99,99% 100,00% 99,92% 99,95% 98,34% 99,72% 81,09% 87,06%

inst19 99,99% 99,98% 99,90% 99,90% 99,28% 97,00% 78,36% 89,19%

inst20 100,00% 100,00% 99,99% 99,96% 99,65% 99,78% 96,85% 93,69%

Table 2
Paired two-sample t-tests in samples of objective functions values

p-values H1 : fV NS < fKKH p-values H1 : fV NS < fLpt 1

k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

0,010% 0,000% 0,000% 0,000% 0,111% 0,060% 0,020% 0,020%

The values of gap() = 100% are due to rounding.

Table 3
One-sample t-test in gap of the table 1 with (1− α) = 0.99.

p-values H1 : gap(V NS,KKH) > 0.9 p-values H1 : gap(V NS,Lpt 1) > 0.9

k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

0,000% 0,000% 0,000% 0,000% 5,444% 17,845% 98,489% 99,355%

Table 2 shows the p-values of the statistical tests using objective function
values falg as samples. In all 8 tests it is possible to state, with 99% confidence,
that the results found by the Algorithm 1 are smaller than the results of
the KKH and the Lpt 1 algorithms. After confirming the superiority of the



Algorithm 1, the tests shown in Table 3 expose the p-values of the statistical
tests using values of gap() as samples. In the first 4 tests it is possible to
state, with 99% confidence, that the results from Algorithm 1 are at least 10
times lower than those of KKH. The same has not happened in the last 4
tests, regarding Lpt 1. For k = {3, 4, 5}, the tests would reject H0 only if
H1 : gap(V NS, Lpt 1) > 0, 75. The Algorithm 1 did not overcome Lpt 1 at
instance inst3 with k = 6. In this case, the response of Lpt 1 is about 2.48
times lower than that of Algorithm 1. Even if this value were discarded, it
would not be possible to affirm the superiority of Algorithm 1 in a test in
which H1 : gap(V NS, Lpt 1) > 0, 75, as in the cases for k = {3, 4, 5}.

5 Conclusions and Future Works

This article presents a proposal for adapting the VNS metaheuristic for
the MWNPP solution and a comparison of the results obtained with this
adaptation with results from constructive algorithms in the literature. The
algorithms were tested with randomly generated instances having uniformly
distributed elements. The results show that the adaptation of the VNS meta-
heuristic overcame the results of the constructive algorithms in the absolute
majority of the instances. As future work, it is proposed the application of the
VNS metaheuristic in an implicit enumeration method, as well as the accom-
plishment of a test of statistical significance having, as measures, the solution
time and the memory usage.

References

[1] Gent, I. P. and T. Walsh, Analysis of heuristics for number partitioning,
Computational Intelligence 14 (1998), pp. 430–451.

[2] Graham, R. L., Bounds for certain multiprocessing anomalies, The Bell System
Technical Journal XLV (1966), pp. 1563–1581.

[3] Graham, R. L., Bounds on multiprocessing timing anomalies, SIAM Journal on
Applied Mathematics 17 (1969), pp. 416–429.

[4] Karmarkar, N. and R. M. Karp, The differencing method of set partition,
Report UCB/CSD 81/113, Computer Science Division, University of California,
Berkeley, CA (1982).

[5] Karp, R. M., Reducibility among combinatorial problems, in: R. E. Miller, J. W.
Thatcher and J. D. Bohlinger, editors, Proceedings of a Symposium on the



Complexity of Computer Computations (1972), pp. 85–103.

[6] Korf, R. E., A complete anytime algorithm for number partitioning, Artificial
Intelligence 106 (1998), pp. 181–203.

[7] Korf, R. E., Multi-way number partitioning., in: IJCAI, Citeseer, 2009, pp. 538–
543.

[8] Korf, R. E., E. L. Schreiber and M. D. Moffitt, Optimal sequential multi-way
number partitioning, in: International Symposium on Artificial Intelligence and
Mathematics (ISAIM-2014), Fort Lauderdale, FL, USA, 2013.

[9] Kratica, J., J. Kojić and A. Savić, Two metaheuristic approaches for
solving multidimensional two-way number partitioning problem, Computers &
Operations Research 46 (2014), pp. 59 – 68.

[10] Michiels, W., J. Korst, E. Aarts et al., Performance ratios for the karmarkar-
karp differencing method, Electronic Notes in Discrete Mathematics 13 (2003),
pp. 71–75.

[11] Mladenović, N. and P. Hansen, Variable neighborhood search, Computers &
Operations Research 24 (1997), pp. 1097 – 1100.

[12] Moffitt, M. D., Search strategies for optimal multi-way number partitioning,
in: Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, AAAI Press, 2013, pp. 623–629.

[13] Pedroso, J. P. and M. Kubo, Heuristics and exact methods for number
partitioning, European Journal of Operational Research 202 (2010), pp. 73–
81.

[14] Schreiber, E. L. and R. E. Korf, Cached iterative weakening for optimal multi-
way number partitioning, in: Proceedings of the 28th Annual Conference on
Artificial Intelligence (AAAI-14), Quebec City, Canada, 2014, pp. 2738–2745.


	Introduction
	Problem Setup
	Proposed Algorithm
	Experimental Results
	Conclusions and Future Works
	References

